전자기기계시스템진동 및 음향설계실험실

Acoustic and Vibration Design of Electromagnetic-Mechanical System Lab

목표 : Multiphysics 전문가 양성

· 신 내 역 표 기계 중 역 무 JSAN NATIONAL UNIVERSITY CHOOL OF MECHANICAL ENGINEERING

- Lab introduction– Lab members

Undergraduate research student

황상문 교수 (Sang Moon Hwang)

- Professor
- shwang@pusan.ac.kr

학력 및 약력

- Univ. of California at Berkeley 박사학위 취득(1994년)
- 부산대학교 기계공학부 교수 (1996년 ~ 현재)
- ㈜ EM-TECH 창립 및 대표이사

(2001년~2012년)

부산대학교 기계공학부 PUSAN NATIONAL UNIVERSITY SCHOOL OF MECHANICAL ENGINEERING

*** TAK PARK

Undergraduate research student

, 부산대학교 기계공학부 PUSAN NATIONAL UNIVERSITY SCHOOL OF MECHANICAL ENGINEERING

*** INN

OH

Undergraduate research student 부산대학교 기계공학부 PUSAN NATIONAL UNIVERSITY SCHOOL OF MECHANICAL ENGINEE

1 – Lab introduction – Lab research projects (2017-2023)

Vibration motor (Vertical)

(b) Projection view of Motor

1.	Upper Cover
2.	Mass
3.	Magnet
4.	Pole Cover
5.	Coil
6.	Spring
7.	Lower Cover
8.	Shaft

(a) Exploded view of Motor

▶ Point

- One set of coil and magnet
- Simple structure

- Horizontal vibration
- 4 mangets
- Designed for smartphone

• Force distribution in each rotation angle in BLDC motor

• Increasing the current force for each point and easy control

▶ Point

•Coil and diaphragm vibration due to Lorenz force

• 2 way microspeaker for performance enhancement

Balanced Armature (BA) driver

Hybrid earphone

▶ Point

- Armature and diaphragm vibrate due to magnetic force
- Fast response: Rapid vibration due to small current
- Excellent high frequency response

▶ Point

- BA receiver focus on high frequency
- Dynamic receiver: :Focus on low frequency
- Hybrid: Combine the advantage, better performance

- ▶ Point
- Passive vibration due to the air pressure force in speaker box
- Speaker –Sound radiation
- Passive Vibrator- Generate vibration

Smartphone side firing speaker module

- ▶ Point
- Thickness limitation due to smartphone thickness
- Side firing speaker adopted.

- Replace mechanical spring to magnetic spring
- Designed for smartphone

• Higher force in limited space

2-Applications (EM-Tech)

3- Experiment setups (EM-Tech)

SPL Measurement

Waterproof test

Klippel equipment

Laser based device

[2019]

- 1. Jiang, Y.W., Xu, D.P., Jiang, Z.X., Kim, J.H., and Hwang, S.M., **2019**. Comparison Of Multi-Physical Coupling Analysis of A Balanced Armature Receiver Between The Lumped Parameter Method and The Finite Element/Boundary Element Method. *Applied Sciences*, *9*(5), p.839.
- 2. Jiang, Y.W., Xu, D.P., Jiang, Z.X., Kim, J.H., and Hwang, S.M., **2019**. Analysis and Design of Helmholtz Protector to Improve High-Frequency Response of Insert Earphone. *Applied Sciences*, 9(12), p.2541.
- 3. Jiang, Y.W., Xu, D.P., Kwon, J.H., Jiang, Z.X., Kim, J.H., and Hwang, S.M., **2019**. Analysis and Application of Zeolite in Microspeaker Box. *Journal of Mechanical Science and Technology*, *33*, pp.3679-3683.
- 4. Jiang, Z.X., Kim, J.H., Jiang, Y.W., Xu, D.P., and Hwang, S.M., **2019**. Analysis and Design of a Novel Concept Gasket to Improve the Reliability of the Balanced Armature Receiver Used in Earphones. *Applied Sciences*, *9*(18), p.3661.
- 5. Jiang, Y.W., Xu, D.P., Jiang, Z.X., Kim, J.H., and Hwang, S.M., **2019**. Analysis and Development of Hybrid Earphone Combining Balanced-Armature and Dynamic Receivers. *Applied Sciences*, *9*(23), p.5047.

[2020]

- 1. Jiang, Y.W., Xu, D.P., Jiang, Z.X., Kim, J.H., Park, K.H., and Hwang, S.M., **2020**. Analysis and Application of Screens for Acoustic Impedance in A Speaker Box with A Passive Radiator to Decrease Standing-wave Influence. *Applied Sciences*, *10*(3), p.866.
- 2. Jiang, Z.X., Park, K.H., Kim, J.H., Jiang, Y.W., Xu, D.P., and Hwang, S.M., **2020**. Analysis and Design of A New Linear Vibration Motor Used to Reduce Magnetic Flux Leakage in In-vehicle Infotainment. *Applied Sciences*, *10*(10), p.3370.
- 3. Park, K.H., Jiang, Z.X., Jiang, Y.W., and Hwang, S.M., **2020**. Development of Direct-vibration Actuator for Bezel-less Display Panels on Mobile Phones. *Applied Sciences*, *10*(14), p.4975.
- 4. Park, K.H., Jiang, Z.X., and Hwang, S.M., **2020**. Design and Analysis of A Novel Microspeaker with Enhanced Low-Frequency SPL and Size Reduction. *Applied Sciences*, *10*(24), p.8902.
- 5. Jiang, Z.X., Park, K.H., and Hwang, S.M., **2020**. Design and Analysis of Novel Low-Cost Linear Vibration Motor for an Electronic Cigarette. *Applied Sciences*, *10*(24), p.8915.

[2021]

Jiang, Z.X., Park, K.H., and Hwang, S.M., **2021**. Design of a Width Slim Linear Vibration Motor Used for Automotive LCD Panel. *IEEE Transactions on Magnetics*, 58(2), pp.1-5.

[2022]

- 1. Jiang, Z.X., Park, K.H., and Hwang, S.M., **2022**. Design and Analysis of Watch Speaker to Enhance Waterproof Performance by Using Liquid Silicone Rubber Side Diaphragm. *Sensors and Actuators A: Physical*, *338*, p.113452.
- 2. Jiang, Z., Park, K.H., and Hwang, S.M., **2022**, June. Novel Magnetic Circuit Design and Acceleration Calculation of Horizontal Linear Vibration Motor. In *Actuators* (Vol. 11, No. 6, p. 149). MDPI.
- 3. Jiang, Z.X., Park, J.H., Xu, D.P., and Hwang, S.M., **2022**. A Linear Haptic Motor with Cogging Force Optimization. *Sensors and Actuators A: Physical*, *346*, p.113860.
- 4. Jiang, Z.X., Park, J.H., and Hwang, S.M., **2022**. Novel Design of Dual-voice-coil Microspeaker for Low-frequencies Sound Pressure Level Improvement. *Sensors and Actuators A: Physical*, *346*, p.113853.

[2023]

- 1. Jiang, Z.X., Park, J.H., Xu, D.P. and Hwang, S.M., **2023**. Analysis and prediction of mid-high peak frequency for microspeaker with sidefiring front chamber. *Applied Sciences*, *13*(2), p.1018.
- 2. Jiang, Z.X., Park, J.H., Xu, D.P., and Hwang, S. M., **2023**, February. Analysis Method Development of Hybrid Linear Motor Considering Cogging Force Effect. In *Actuators* (Vol. 12, No. 3, p. 99). MDPI.
- 3. Jiang, Z.X., and Hwang, S.M., **2023**. Design and Analysis of Wide-bandwidth Actuator for Haptic Controller with Novel Magnetic Circuit. *IEEE Transactions on Magnetics*.

[2024]

- 1. Jiang, Z.X., Park, K.T., Xu, D.P. and Hwang, S.M., **2024**. Design and Analysis of two-way Microspeaker to Enhance Mid-frequency Sound Pressure Level. *Sensors and Actuators A: Physical*, (Vol. 365, p.114914)
- 2. Park, K. T., Jiang, Z.X., Oh, Y, I. and Hwang, S.M., **2024**. Novel Microspeaker Design for Smartwatches with Integrated Woofer and Tweeter Units. *IEEE CEFC*
- 3. Jiang, Z.X., Park, K.T., Xu, D.P. and Hwang, S.M., **2024**. Design and Analysis of Linear Haptic Motor with Pure Magnetic Spring. *IEEE CEFC*

